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This paper analyses the relaxation towards the steady state of an advecting–diffusing
field in a finite-length channel. The dominant eigenvalue, −ΛF , of the advection–
diffusion operator provides the slowest relaxation time scale for achieving steady state
in open flow devices. We focus on parallel flows and analyse how ΛF depends on the
velocity profile and the molecular diffusivity. As a result of the universal localization
features of the eigenfunction associated with ΛF , we find that ΛF can be predicted
analytically based on the local behaviour of the velocity profile near the stagnation
points. Microfluidic applications of the theory are also addressed.

1. Introduction
The appropriate mathematical formulation for the physics of single-phase scalar

mixing in an incompressible flow is described by the scalar field equation,

∂φ

∂t
= −∇ · (vφ) + D∇2φ = Lv,D[φ], (1.1)

where φ is the scalar concentation, D is the diffusivity of the transported entity, and
the velocity field v is solenoidal (∇ · v = 0). The properties of the solutions of (1.1) are
strongly related to the nature of the domain where the mixing process occurs.

Three broad categories can be identified, namely unbounded domains (e.g. �2

or the ordinary space �3), closed bounded domains (e.g. a closed stirred vessel),
and open bounded domains (e.g. inflow–outflow systems such as static mixers or
microchannels). The better understood case is that of unbounded domains. In this
context, a consistent theory (homogenization theory) has been derived for a variety of
two-dimensional convective flows possessing a periodic (Fannjiang & Papanicolaou
1994) or random (Fannjiang & Papanicolaou 1997) cellular structure. This theory
predicts that the spatiotemporal asymptotic behaviour of (1.1) approaches that of
a pure diffusion equation with constant tensor diffusivity. A physical consequence
of this property is that the time asymptotic contour levels of an initial scalar field
with compact support (e.g. a Dirac’s pulse) approach that of an ellipses whose
principal axes grow proportional to

√
t . The proportionality constants depend upon

the interaction between the specific structure of the velocity field and diffusional
motion. Alternative approaches to mixing in two-dimensional unbounded domains in
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the presence of time-periodic flows make explicit use of Lagrangian templates such as
invariant manifolds in place of the Eulerian description of the velocity streamfunction
(Beigie Leonard & Wiggins 1991). For further details see e.g. the review paper by
Majda & Kramer (1999).

While in unbounded domains the dynamics of a scalar field φ is indicative of
the dispersion properties, in bounded domains the mixing action deriving from the
interplay between advection and diffusion is aimed at homogenizing φ within the
mixing space Ω . The techniques used for investigating dispersion in unbouded
domains, be they Eulerian or Lagrangian, are of little use in the case where the
mixing space Ω is bounded, in that the boundary conditions prescribed on the
boundary ∂Ω have a direct impact on the time asymptotic properties of φ(x, t).

If the domain is bounded and closed, and therefore the walls are impermeable to the
advecting–diffusing scalar (i.e. J · n = 0 on ∂Ω , where J = vφ − D∇φ, and n is a unit
outward-pointing vector normal to ∂Ω), then, as t → ∞, the scalar field approaches a
spatially uniform structure φ(x, t) → φ0 = (

∫
Ω

φ(x, 0) dx)/meas(Ω), where meas(Ω) is
the (Lebesgue) measure of the mixing space.

In this situation, quantifying mixing efficiency (i.e. homogenization dynamics)
consists of determining the spectral structure associated with the advection–diffusion
operator Lv,D if the flow is autonomous, or with the associated Floquet operator, in
the case where the velocity field is time-periodic (Giona et al. 2004a).

Several articles have focused on the structure of the spatial patterns in periodically
advecting–diffusing systems (Pierrehumbert 1994), showing that, in the presence of
small diffusivity, the eigenfunctions of the Floquet operator, or of the Frobenius–
Perron operator associated with advection with small noise superimposed, are
localized in the non-mixing region of the flow (Pikovsky & Popovych 2003; Giona
et al. 2004a). The effect of different boundary conditions on the structure of the
eigenfunctions of the advection–diffusion operator has been addressed in Gilbert
(2006) and in Chertkov & Lebedev (2003) in regard to advecting–diffusing and reacting
systems. Most of these contributions have approached the analysis of advecting–
diffusing systems by considering the pulsed-system approximation, which is obtained
by splitting the simultaneous action of advection and diffusion into two separate
steps: a first step in which advection is active and no diffusion occurs, and a second
step without advection, in which solely the action of diffusion acts on the scalar
field (Pierrehumbert 1994; Pikovsky & Popovych 2003; Gilbert 2006). The limits
of applicability of this technique have been addressed in Backus (1958) and more
recently in Giona, Androver & Cerbelli (2005).

Focusing on the autonomous case, the positive character of Lv,D , expressed by the
fact that if φ(x, 0) � 0 then φ(x, t) � 0 at all times t > 0, implies the existence of a real
eigenvalue −ΛF , referred to as the Frobenius eigenvalue, which corresponds to mass
conservation, and of its associated real-valued eigenfunction, ψF (x). In the case of
bounded closed domains, ΛF = 0, and ψF (x) = 1Ω , where 1Ω is a constant unit function
defined in Ω . In other words, the Frobenius eigenvalue is associated with the trivial
uniformly mixed state. The main quantity assessing the mixing efficiency is therefore
the second dominant eigenvalue, say −Λ1 = −λ1 + i ω1, associated with Lv,D , defined
as the eigenvalue whose real part possesses the lowest – strictly positive – absolute
value. The reciprocal of λ1 provides the slowest relaxation time scale towards the
uniformly mixed state. Note that the extension of these observations to time-periodic
closed flows requires only obvious modifications when applied to the Floquet operator
in place of Lv,D . Specifically, −ΛF = 1, and the dominant eigenvalue is defined as the
eigenvalue, different from ΛF , possessing the highest modulus.
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A point of primary interest is then to establish how λ1 depends on the velocity
field v and on the diffusivity D, especially in the limit of vanishing noise, D → 0.
It can be observed that the intermediate-time-scale dynamics may show significant
deviations from the asymptotic exponential scaling as discussed in Popovych, Pikovsky
& Eckhardt (2007).

In a previous paper (Giona, Cerbelli & Vitacolonna 2004b), a closed-form
expression of such dependence was obtained for the case of steady parallel flows.
It was found that λ1 ∼ Dα , where the exponent α depends on the local structure of the
velocity field near its extremal point (relative maxima and minima). Specifically, the
results is α = 1/2 whenever the velocity profile is locally quadratic, a situation that
occurs in the vast majority of cases.

The theoretical analysis of open-flow systems is not as well developed as for closed
flows, though several interesting results have been obtained (Tel et al. 2005; Straube &
Pikovsky 2007).

In this article, we analyse the case of open bounded flows, where the scalar φ is
continuously fed to an inlet section and withdrawn at an outlet section of a finite
length two-dimensional channel. Specifically, we focus on the relaxation properties
towards the steady-state condition in the inflow/outflow system. The theory presented
can be considered as the extension of the results reported in Giona et al. (2004b) to
open bounded flow devices.

Different velocity profiles including plug flow, Poiseuille, and shear flows are
considered. The main difference with respect to closed domains is that the quantity∫

Ω
φ(x, t) dx is not conserved for open systems, and consequently the focus is oriented

towards predicting the Frobenius eigenvalue ΛF �= 0 itself, which, for this type of
system, provides the slowest relaxation time scale towards steady state associated
with a generic initial loading and with a prescribed feeding condition.

The article is organized as follows. Section 2 defines the problem formally and
introduces the concept of the Frobenius eigenvalue. Section 3 compares and contrasts
the present analysis with the phenomenon of Taylor–Aris dispersion in tubes. Section 4
develops the spectral theory for bounded open flows, defines the universality properties
and compares the theory with detailed numerical simulations. Section 5 describes
further results supporting the theory and addresses some of its practical fluid dynamic
implications.

2. Statement of the problem
Let the rectangular channel be represented by 0 � x � L, 0 � y � W (y = 0 and

y = W represent the channel walls), and let the velocity field be given by v = (u(y), 0),
u(y) � 0. By introducing the dimensionless variables (x, y) → (x/L, y/W ), t → tL/Vc,
v → v/Vc, where Vc is a reference velocity such that the resulting dimensionless flow
possesses unit flow rate, the advection–diffusion equation (1.1) becomes

∂φ

∂t
= −u(y)

∂φ

∂x
+ ε

(
∂2φ

∂x2
+ α2 ∂2φ

∂y2

)
= Lv,ε,α[φ] (2.1)

where α = L/W � 1 is the aspect ratio of the channel, and ε = 1/Pe, where Pe = VcL/D

is the Péclet number. In order to simplify the notation, we use the same symbols
x = (x, y), v = (u, v) to indicate the corresponding dimensionless quantities, with
the understanding that only the dimensionless formulation of the problem will be
considered henceforth.
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Equation (2.1) is given with the initial condition φ(x, 0) = φ0(x), with boundary
conditions

∂φ

∂y

∣∣∣∣
y=0

=
∂φ

∂y

∣∣∣∣
y=1

= 0 (2.2)

at the channel walls, and the conditions

φ|x=0 = φi(y),
∂φ

∂x

∣∣∣∣
x=1

= 0 (2.3)

at the inlet and outlet sections, respectively. Specifically, the outlet condition expresses
the classical Danckwerts conditions at the outlet section (Danckwerts 1953). Other
types of inlet/outlet boundary conditions have been proposed (Smith 1988), which
are not of general applicability, and can be used essentially only for one-dimensional
models.

The right hand-side of (2.1) defines the advection–diffusion operator Lv,ε,α , which
is a positive operator (Farina & Rinaldi 2000), i.e. if the inlet and initial conditions
are non-negative, then the solution is non-negative for any t > 0. The operator Lv,ε,α

possesses a countable set of eigenvalues all with strictly negative real part.
The positive character of Lv,ε,α implies that its dominant eigenvalue (i.e. the

eigenvalue whose real part possesses lowest absolute value) is real and of multiplicity
equal to 1. Its associated eigenfunction can always be chosen to be non-negative.
This eigenvalue, which we denote as −ΛF (ΛF > 0), provides the slowest time scale
describing the exponential relaxation towards the steady-state profile φss (x),

φ(x, t) − φss (x) 	 ψF (x)e−ΛF t , t → ∞, (2.4)

associated with generic initial and inlet conditions. The function ψF (x) entering (2.4),
is the Frobenius eigenfunction associated with −ΛF .

Therefore, the study of the relaxation towards the steady state of a scalar field in
bounded open flow systems consists of analysing the dependence of ΛF on Pe and
on the flow field u(y).

While in closed flow systems the real part of the eigenvalue −Λ1 is a measure of
the mixing efficiency, the eigenvalue −ΛF is a measure of the time scales required
to reach steady conditions. Thus, while −ΛF is not in itself a measure of mixing
efficiency, which in steady state can be obtained by studying the properties of φss (x)
entering (2.4), it provides preliminary information that is essential for motivating the
analysis of steady-state mixing. For instance, a time scale excessively long, i.e. a small
value of −ΛF , suggests that a steady-state assessment of mixing efficiency might be
unphysical and that the whole transient behaviour should be considered.

3. Relaxation dynamics and Taylor–Aris dispersion
In the case of a flat velocity profile, i.e. u(y) = 1, the advection–diffusion operator

becomes

Lv,ε,α[φ] = −∂φ

∂x
+

1

Pe
∇2

αφ, (3.1)

where ∇2
α = (∂2/∂x2 +α2∂2/∂y2). In order to obtain a proper setting for the eigenvalue

problem associated with (2.1), let us homogenize the boundary condition by setting
ψ(x) = φ(x) − φss(x), where φss (x) is the steady-state solution, so that ψ(x) satisfies



Advection–diffusion in finite-length channels 391

(3.1) with the homogeneous conditions

∂ψ

∂y

∣∣∣∣
y=0

=
∂ψ

∂y

∣∣∣∣
y=1

= 0, ψ |x=0 = 0,
∂ψ

∂x

∣∣∣∣
x=1

= 0. (3.2)

By setting ψ(x, y) = q(x) cos(nπy) in the eigenvalue/eigenfunction problem
Lv,ε,α[ψ] = λψ , one obtains for the auxiliary function q(x) the equation

q ′′(x) − Pe q ′(x) − Peβq(x) = 0, (3.3)

where q ′(x) = dq(x)/dx, β = α2n2π2/Pe + λ, and the function q(x) should satisfy the
boundary conditions q(x)|x = 0 = 0, q ′(x)|x = 1 = 0.

The second-order equation in q(x), (3.3), together with its boundary conditions
provides a countable set of one-dimensional eigenvalue-eigenfunction problems,
which admit the solution qm(x) = ePex/2 sin(ωmx), m = 1, 2, . . . , where the ωm

form an increasing sequence of positive numbers fulfilling the cardinal equation
tan(ωm) = −2ωm/Pe. Specifically, at large Pe, ωm 	 (2m − 1)π/2. The eigenvalue
spectrum {λn,m} of the advection–diffusion operator is therefore given by

−λn,m =
ω2

m + α2n2π2

Pe
+

Pe

4
, n = 0, 1, . . . , m = 1, 2, . . . . (3.4)

Therefore, the Frobenius eigenvalue is obtained for n = 0 and m = 1 and is

ΛF =
ω2

1

Pe
+

Pe

4
(3.5)

and the associated eigenfunction is expressed by ψF (x, y) = ePex/2 sin(ω1x). The
dominant Frobenius eigenfunction is excited by any inlet condition possessing a
non-vanishing mean. Inlet conditions possessing zero mean excite the next dominant
eigenvalue of the spectrum, which is given by Λ1 = −λ1,1 = (ω2

1 + α2π2)/Pe + Pe/4.
Equation (3.5) is formally analogous to the well-known relationship yielding the

effective dispersion coefficient Deff predicted by Taylor–Aris theory (Taylor 1953,
1954; Aris 1956). However, the analogy is purely coincidental. Before analysing the
behaviour of the Frobenius eigenvalue associated with a generic profile u(y), we
explore this point in some detail.

The Taylor–Aris dispersion coefficient quantifies a convection-enhanced dispersion
phenomenon that can be observed in pipes or ducts where the velocity profile satisfies
no-slip boundary conditions. The no-slip conditions make the axial velocity non-
uniform in the channel cross-section. Suppose a scalar pulse is injected at the inlet.
In such conditions, consider the scalar profile averaged over the pipe (or the duct)
cross-section in a reference frame that moves downstream with the average bulk
velocity of the flow. Taylor–Aris theory predicts that in this frame the solution of
the cross-averaged advection–diffusion equation possesses dispersion properties which
are asymptotically equivalent to those of a pure diffusion equation with an effective
diffusivity coefficient Deff given by Deff = D + W 2V 2

c /(192D). In dimensionless terms,
this implies that for sufficiently large t (or, equivalently far enough from the inlet),
the effective Péclet number Peeff = VcL/Deff should depend on the Péclet number Pe
according to the equation

1

Peeff

=
1

Pe
+

Pe

192α2
, (3.6)

which is structurally similar to (3.5), since it consists of the combination of two terms,
one proportional to Pe, and the other to the reciprocal of Pe. However, this analogy
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Figure 1. Outlet average concentration C(t) vs t , the solution of (2.1) for a parabolic velocity
profile and an impulsive inlet condition for α = 5. (a) Normal scale, (b) log-normal plot. Line
(i) refers to Pe = 102, line (ii) to Pe = 5 × 102, line (iii) to Pe = 103.

is purely formal, since the plug flow is the only parallel flow for which Taylor–Aris
theory provides the trivial result Peeff = Pe.

The essence of the Taylor–Aris dispersion phenomenon is that flow non-uniformities
over the cross-section induce a non-monotonic behaviour of the variance of the
concentration pulse with respect to the diffusion coefficient. However, in the case of
plug flow, u(y) = Vc = constant, such a phenomenon never occurs as discussed above.

Therefore, the relaxation dynamics (expressed by the behaviour of the Frobenius
eigenvalue) and Taylor–Aris dispersion should be considered as two distinct and
complementary phenomena in that they refer to different physical situations and to
different fluid dynamic problems associated with the interplay between advection and
diffusion in channels.

This observation is made clear by the analysis of the ‘chromatographic experiments’
depicted in figures 1(a) and 1(b). Figure 1 depicts the outlet average concentration

C(t) =
∫ 1

0
φ(1, y, t) dy solution of Eq. (2.1) for φ|t = 0 = 0, φ|x = 0 = δ(t), where δ(t) is an

impulsive Dirac distribution for a two-dimensional Poiseuille flow, u(y) = 6y(1 − y)
(the prefactor of this parabolic profile stems from the normalization condition∫ 1

0
u(y) dy = 1).
While Taylor–Aris theory concerns with the broadening of the outlet concentration

profile, i.e. the variance of the average C(t) as a function of time t (see figure 1a), the
analysis of the relaxation properties focuses on the exponential scaling of the tail of
the outlet average concentration profile (figure 1b), and on how this tail depends on
the Péclet number and on the flow profile.

4. Spectral theory of open flows and universality
This Section addresses the spectral properties of the advection–diffusion operator

associated with generic open bounded flows. The theoretical analysis developed in
this section is not limited to parallel flows but applies to generic laminar flows in
channels and ducts. The focus is the behaviour of the dominant Frobenius eigenvalue,
the solution of the real eigenvalue problem

−ΛF ψF = −∇ · (vψF ) + ε∇2ψF , (4.1)
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subject to the homogeneous boundary conditions:

ψF |Si
= 0 ,

∂ψF

∂n

∣∣∣∣
So∪Sc

= 0 , (4.2)

where ∂/∂n = n · ∇ indicates the normal derivative and n is the unit normal vector,
pointing out of the flow domain Ω . In (4.1), Si , Sc and So denote the inlet section,
the channel walls, and the outlet section, respectively.

Equation (4.1) is a dimensionless formulation obtained by rescaling all the spatial
coordinates by a single characteristic length scale. advection–diffusion in parallel
channel flows, i.e. the properties of the eigenvalues of the operator Lv,ε,α , is addressed
as a particular case at the end of § 4.1.

For the velocity field, we assume the following conditions: (i) v is incompressible,
(ii) v = v(x) is autonomous, i.e. it does not depend on time, (iii) the outward normal
component of the velocity at the outlet section is non-negative.

The Frobenius eigenvalue/eigenfunction has been estimated numerically by solving
(1.1) by means of a finite-volume scheme in the presence of the homogeneous boundary
conditions (4.2), starting from a generic initial profile, and by applying the iterative
power method (Mathews & Fink 2004) to the concentration profiles so obtained. The
time advancement was obtained through a second-order explicit algorithm. A total
number of cells Nc = M × N up to M = 4 × 103 and N = 5 × 102 was used to ensure
independence of the results from the discretization.

4.1. The Frobenius eigenvalue

By integrating the left- and right-hand sides of (4.1) over the flow domain, one obtains

−ΛF

∫
Ω

ψF dx = −
∫

Ω

∇ · (vψF )dx + ε

∫
Ω

∇2ψF dx. (4.3)

Since ψF can always be chosen non-negative, the integral on the left-hand side is
positive. For the two integrals entering the right-hand side of (4.3), the application
of the divergence theorem and the use of the boundary conditions (4.2) provide the
following relations:∫

Ω

∇ · (vψF )dx =

∫
So

ψF vndS,

∫
Ω

∇2ψF dx =

∫
Si

∂ψF

∂n
dS, (4.4)

where vn = v · n is the normal outward component of the velocity. By substituting
(4.4) into (4.3), the following relation for ΛF is obtained:

ΛF =

(∫
Ω

ψF dx

)−1 [∫
So

ψF vndS − ε

∫
Si

∂ψF

∂n
dS

]
. (4.5)

Another useful relation for ΛF can be obtained by multiplying (4.1) by ψF and
integrating over the flow domain Ω . It follows that∫

Ω

ψF ∇ · (vψF ) dx =
1

2

∫
Ω

∇ · (vψ2
F ) dx =

1

2

∫
∂Ω

ψ2
F v · n dS =

1

2

∫
So

ψ2
F vn dS (4.6)

and ∫
Ω

ψF ∇2ψF dx =

∫
Ω

∇ · (ψF ∇ψF ) dx −
∫

Ω

|∇ψF |2 dx

=

∫
∂Ω

ψF

ψF

∂n
dS −

∫
Ω

|∇ψF |2 dx = −
∫

Ω

|∇ψF |2 dx, (4.7)
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where the surface integral entering the right-hand side of (4.7) vanishes since either
ψF (on Si) or the normal derivative ∂ψF /∂n (on So ∪ Sc) is zero at the boundary
∂Ω . Collecting these expressions, one obtains for ΛF the relation

ΛF =
(
‖ψF ‖2

L2

)−1

[
1

2

∫
So

ψ2
F vndS + ε‖∇ψF ‖2

L2

]
, (4.8)

where ‖ψF ‖L2 indicates the L2-norm of the eigenfunction ψF , and ‖∇ψF ‖L2 the
L2-norm of its gradient,

‖ψF ‖2
L2 =

∫
Ω

ψ2
F (x) dx, ‖∇ψF ‖2

L2 =

∫
Ω

|∇ψF (x)|2 dx. (4.9)

Since vn|So
� 0, (4.8) shows that ΛF is always positive, and therefore the dominant

eigenvalue −ΛF is always negative, as required by the dissipative nature of the
advection–diffusion operator in bounded open flows.

In the case of two-dimensional channel flows, for which the advection–diffusion
operator is given by (2.1), equations (4.5) and (4.8) simplify to

ΛF =

(∫ 1

0

dx

∫ 1

0

ψF dy

)−1 [∫ 1

0

u(y) ψ |x=1 dy − ε

∫ 1

0

∂ψF

∂x

∣∣∣∣
x=0

dy

]
(4.10)

and

ΛF =
(
‖ψF ‖2

L2

)−1

[
1

2

∫ 1

0

u(y)2
F

∣∣
x=1

dy + ε‖∇αψF ‖2
L2

]
, (4.11)

where ‖∇αψF ‖2
L2 =

∫ 1

0
dx

∫ 1

0
[(∂ψF /∂x)2 + α2(∂ψF /∂y)2] dy.

4.2. Localization and universality

Let us apply the approach outlined above to a simple physically realizable flow,
namely plane Poiseuille flow defined in a channel. In dimensionless form, the velocity
profile is then given by u(y) = 6y(1 −y). Figure 2(a, b) shows the dominant Frobenius
eigenfunction ψF (normalized to possess unit L2-norm) for two values of the Péclet
number. As can be observed, the Frobenius eigenfunction is localized at a boundary
layer near the channel walls where the velocity vanishes. As the Péclet number
increases (from Pe = 102 to Pe = 103, see figure 2) the Frobenius eigenfunction
becomes more localized towards the outlet section and closer to the channel walls
(note that figure 2b has a different scale than figure 2a). This phenomenon is clearly
observable in the data depicted in figure 3(a, b), showing the localization properties
of the Frobenius eigenfunction close to the outlet section for a broad range of Pe
values.

The spatial structure of the eigenfunctions depicted in figure 3(a, b) suggests a
global invariant rescaling of the Frobenius eigenfunctions at high Pe values into a
single master function Ψ ∗

F . Let z = 1 − x, and ψF,ε(z, y) be the normalized (to unit L2

norm) Frobenius eigenfunction for the value ε of the reciprocal Péclet number. The
following invariant rescaling is proposed:

ψF,ε(z, y) = A−1(ε)Ψ ∗
F (z/β1(ε), y/β2(ε)) (4.12)

where β1(ε) and β2(ε) are functions of ε, and A−1(ε) is the normalization constant.
This means that the Frobenius eigenfunctions collapse onto the master function

Ψ ∗
F (z, y) = A(ε)ψF,ε(β1(ε)z, β2(ε)y), (4.13)
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Figure 2. Contour plots of the Frobenius eigenfunction for a planar parabolic flow, α = 1.
(a) Pe = 102. (b) Pe = 103, snapshot close to the outlet section.

at high Pe values. The result of this rescaling is depicted in figure 3(c, d) by
using β2(ε) = β1(ε) ∼ ε1/2, and the rescaled coordinates z∗ = β1(ε)(1 − x), y∗ = β2(ε)y.
Henceforth, without loss of generality, β1(ε) = β2(ε) = β(ε) = ε1/2 can be assumed. This
assumption is required only to simplify the notation and obtaining the scaling of ΛF

with Pe in the simplest possible way. A discussion on the behaviour of β1(ε) and
β2(ε) as a function of the aspect ratio α is developed in § 5.

The localization of the Frobenius eigenfunctions near the regions of vanishing
velocity suggests the existence of universal behaviour for the Frobenius eigenvalue as
a function of the Péclet number, namely the fact that the structure of the Frobenius
eigenfunction and the scaling of the Frobenius eigenvalue depend exclusively on
the local properties of the velocity field close to the channel walls, i.e. close to the
stagnation points of the velocity field. Specifically, this invariant rescaling can be used
for predicting the behaviour of ΛF as a function of Pe for different classes of parallel
flows.

In order to explore this point in some detail, consider the family of simple parallel
flows u(y) = U0y

ν , where U0 = 1 + ν is a normalization factor, and ν is a nonlinearity
exponent controlling the behaviour of the velocity close to lower wall y = 0. The plug
flow corresponds to ν = 0, and linear shear flow to ν = 1.

By substituting (4.12) into (4.5), and enforcing the localization behaviour of the
eigenfunctions near the outlet section, it follows that the surface integral over Si

appearing in (4.5) can be neglected. Regarding the remaining two integrals entering
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Figure 3. Normalized Frobenius eigenfunction for the parabolic profile u(y) = 6y(1 − y),
α = 1. (a) ψF (1 − x, 0) vs 1 − x. (b) ψF (1, y) vs y. The arrows indicate increasing values
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curves reported in (b). Symbols (�, �, �, �) refer to the different curves shown in (a, b) for
3Pe/2 = 2 × 102, 103, 104, 2 × 104, respectively.

(4.5), it follows that

∫
So

vnψF,ε dS = U0 A−1(ε)

∫ 1

0

yνΨ ∗
F (0, y/β(ε)) dy. (4.14)

By performing the change of variable η = y/β(ε), and by observing that as ε → 0 the
new upper integration limit 1/β(ε) can be approximated by ∞ (due to localization
and to the fact that limε → 0 β(ε) = 0), one finally obtains

∫
So

vnψF,ε dS = U0 A−1(ε)βν+1(ε) C1, C1 =

∫ ∞

0

ηνΨ ∗
F (0, η) dη. (4.15)

By enforcing (4.12) in the denominator of (4.5), one obtains

∫
Ω

ψF dx = A−1(ε) β2(ε) C0 , C0 =

∫ ∞

0

∫ ∞

0

Ψ ∗
F (ξ, η) dξ dη. (4.16)

Collecting (4.15) and (4.16) and substituing them into (4.5), if follows that

ΛF = D1β
ν−1(ε), (4.17)
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where D1 = U0 C1/C0. The same approach can be applied to the integrals entering
(4.8). Specifically,

‖ψF,ε‖2
L2 = A−2(ε)C4/β

2(ε), where C4 = ‖Ψ ∗
F ‖2

L2, (4.18)

∫
So

ψ2
F,εvnds = U0 A−2(ε) C2β

ν+1(ε), where C2 =

∫ ∞

0

y2[Ψ ∗
F (0, η)]2 dη, (4.19)

and

‖∇ψF,ε‖2
L2 = A−2(ε)C3, where C3 = |∇Ψ ∗

F |2L2 . (4.20)

By substituting these expressions (4.18)–(4.20) in (4.8), it follows that

ΛF = D2β
ν−1(ε) + D3

ε

β2(ε)
, (4.21)

where D2 = U0 C2/2C4 and D3 = C3/C4. By comparing (4.17) and (4.21), it follows
that

D1β
ν−1(ε) = D2β

ν−1(ε) + D3

ε

β2(ε)
⇒ β(ε) = Kε1/(1+ν) (4.22)

where K = [D3/(D1 − D2)]
1/(ν+1) is a constant. By substituting (4.22) into (4.17) the

following scaling of the Frobenius eigenvalue with respect to the Péclet number can
be derived:

ΛF 	 βν−1(ε) ∼ ε(ν−1)/(1+ν) = Peγ , Pe � 1, (4.23)

where the exponent γ is given by

γ =
1 − ν

1 + ν
. (4.24)

The results for the plug flow (ν = 0, γ = 1) are consistent with the analytic expression
(3.5) for ΛF . Figure 4 shows the comparison, for different parallel flows, of the
theoretical scaling (4.23) (bold lines b–e) and the results obtained through numerical
simulations (symbols).
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At small Pe (Pe < 1), the scaling of ΛF is independent of the flow profile, and is
controlled exclusively by diffusion, leading to the scaling ΛF ∼Pe−1. At high values,
Pe � 102, numerical simulations are consistent with the theory. The planar shear flow
u(y) = 2y and the planar Poiseuille flow u(y) = 6y(1 − y) yield ΛF ∼ constant, i.e.
γ = 0 as predicted by (4.23). Figure 4 shows also the behaviour of ΛF for two other
model flows, namely the quadratic (u(y) = 3y2, i.e. ν = 2), and the cubic shear flow
(u(y) = 4y3, i.e. ν = 3). The theory predicts γ = −1/3 for ν = 2, and γ = −1/2 for ν = 3
which is in perfect agreement with the results of numerical simulations.

Equations (4.23)–(4.24) are the main results of this article. Equation (4.24) shows
that the scaling exponent γ , which controls the behaviour of the Frobenius eigenvalue
at high Pe values, depends exclusively on the local behaviour of the velocity field
near the stagnation points, and specifically on the order of nonlinearity ν of the
flow. Equation (4.24) implies a universal behaviour of the Frobenius eigenvalue with
respect to the structure of the flow field. In fact the exponent γ does not depend
on the fine details of the flow field but exclusively on the nonlinearity exponent ν

near the stagnation points. This result is conceptually analogous to what observed in
closed flow systems (Giona et al. 2004b), where the scaling exponent of the dominant
non-vanishing eigenvalue of the advection–diffusion operator depends on the local
behaviour of the velocity field near its critical points.

4.3. Simple electro-osmotic flows

In the previous section we have considered the spectral properties of two-dimensional
Poiseuille flow and of the family of generalized shear flows u(y) = U0y

ν . Only the case
ν = 1 of this family corresponds to a physically realizable flow. Even though these
model flows for ν > 1 are not physically realizable, their consideration was aimed at
validating the theoretical prediction based on the eigenfunction localization expressed
by (4.23). In fact, quadratic nonlinearities near stagnation points of the velocity profile
can occur in some electro-osmotic flows.

Consider the case of an electro-osmotic flow in a two-dimensional straight micro-
channel. By making use of the Poisson–Boltzmann equation with the Debye–Hückel
approximation (Karniandakis, Beskok & Aluru 2005; Kandlikar et al. 2006), the
electrostatic potential φe(y) is the solution of the linear equation d2φe(y)/dy2 = κ2φe(y),
where κ is the reciprocal of the dimensionless Debye length, with the boundary
conditions φe(y = 0) = φe(y = 1) = ζ , ζ being the zeta-potential of the material forming
the channel walls.

In the presence of a pressure drop opposing the action of the electro-osmotic
forcing term, the dimensionless velocity profile u(y), the solution of the Navier–
Stokes equation with no-slip boundary condition at the walls is (Karniadakis et al.
2005)

u(y) = C[1 − A(κ)eκx + B(κ)e−κx + (�πs)y(1 − y)] = C[ueo(y) + (�πs)y(1 − y)] (4.25)

where κ is the reciprocal of the dimensionless length of the electric double layer, �πs is
the dimensionless pressure drop, A(κ) = (1 − e−κ )/(eκ − e−κ ), B(κ) = (eκ − 1)/(eκ − e−κ ),

and C is a normalization constant so that
∫ 1

0
u(y) dy = 1.

By adjusting the pressure drop for fixed κ it is possible to obtain a stagnation
point in the middle of the channel section. This situation is depicted in figure 5(a) for
κ = 50 and �πs = −4.0.

The flow field u(y) depicted in figure 5(a) possesses three stagnation points on the
cross-section of the channel. Two stagnation points, corresponding to the channel
walls y = 0, 1, are induced by the no-slip boundary conditions, and are characterized
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Figure 5. (a) Electro-osmotic flow profile (4.25) with κ = 50, �πs = −4.0. (b) Frobenius
exponent ΛF vs Pe for the electro-osmotic flow depicted in (a) for α = 1. The solid line
corresponds to the theoretical scaling Λ ∼ Pe−1/3.

by a linear behaviour of the velocity, i.e. ν = 1. The remaining stagnation point is
located in the middle of the channel yc = 1/2 and is characterized by a quadratic
nonlinearity ν = 2, i.e. u(y) = const(y − yc)

2 in the neighbourhood of yc.
From the universal theory developed in the previous Section, it is expected that:

(i) the behaviour close to the stagnation point possessing the higher nonlinearity
exponent ν will control the asymptotic scaling of the Frobenius eigenvalue, since it
is associated with the slowest decay rate, and (ii) the Frobenius eigenfunction will
be localized in the neighbourhood of this stagnation point. In the present case, since
ν = 2, the scaling ΛF ∼ Pe−1/3 is theoretically expected, and the dominant Frobenius
eigenfunction should be localized in the neighbourhood of the channel mid-point
(and not close to the walls).

The results of the numerical simulations for the scaling of the Frobenius eigenvalue
are depicted in figure 5(b), and shown agreement with the theoretical scaling (4.23)–
(4.24).

The spatial structure of the Frobenius eigenfunctions for this model flow is depicted
in figure 6 and in figure 7 (contour plot). As predicted by the theory, the Frobenius
eigenfunctions become progressively localized close to yc = 1/2, which is the stagnation
point associated with the slowest decay rate. This example provides a simple and
physically relevant confirmation of the theory, and motivates the use of the generalized
shear flows discussed in the previous Section.

5. Further observations
The result expressed by (4.23) is valid for generic two- and three-dimensional

laminar flows. For instance, Poiseuille flow in a cylindrical pipe (ν = 1) yields
ΛF ∼ constant for high Pe, and this is confirmed by numerical simulations (not
shown for brevity).

Let us briefly consider the effect of the aspect ratio α on the dominant eigenvalue
of the spectrum of the advection–diffusion operator. Figure 8 shows the behaviour of
the Frobenius eigenvalue for two-dimensional Poiseuille flow for different values of α.
As expected, the asymptotic scaling is independent of the aspect ratio, while the
saturation value of ΛF increases monotonically with α.

As α increases, the envelope of the graph of ΛF as a function of Pe approaches
the behaviour of the Frobenius eigenvalue of the plug flow (compare line (d) with
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Figure 8. Frobenius eigenvalue ΛF vs Pe for the two-dimensional Poiseuille flow for different
values of the aspect ratio α. Line (a) and � refers to α2 = 1, line (b) and � to α2 = 10, line
(c) and � to α2 = 102. Line (d) depicts the Frobenius eigenvalue for the plug flow (3.5).

lines (b) and (c) in figure 8). This phenomenon can be expected, since for α tending
to infinity, the concentration profile, the solution of the dimensionless advection–
diffusion equation (2.1), becomes uniform over each cross-section, and the influence
of the non-uniformities in the velocity profile becomes immaterial. This observation is
confirmed by the spatial structure of the eigenfunctions, a contour plot of which are
depicted in figure 9(a) for α = 102. For Pe � 50, i.e. for values of the Péclet number for
which ΛF is close to the plug-flow value (see figure 8, line c), the eigenfunctions admit
a global support coinciding with the whole cross-section of the tube, and approximate
the Frobenius eigenfunction of the plug flow ψF (x, y) = ePex/2 sin(ω1x). For higher
values of Pe, eigenfunction localization close to the outlet walls becomes significant
(see figure 9b), and this leads to the saturation behaviour of ΛF with Pe.

Let us analyse quantitatively the influence of the aspect ratio on the behaviour
of ΛF . In performing this analysis, the different dependence of β1 = β1(ε, α) and
β2 = β2(ε, α) entering (4.12) on α should be explicitly accounted for. The results of
the numerical simulations suggest that β1 and β2 can be expressed as

β1(ε, α) = β1,0 b(ε) , β2(ε, α) = β2,0 α b(ε) (5.1)

where b(ε) is a function exclusively of ε. By enforcing (5.1) in the integral equations
for ΛF one obtains, in place of (4.17) the expression

ΛF = D1

βν
2

β1

= D̃1 αν bν−1(ε) (5.2)

where D̃1 = D1(b
ν
2,0/b1,0), which indicates that for α � 1, ΛF ∼ αν . This result is

consistent with the closed form expression for the plug flow (ν = 0), (3.5), where
ΛF is independent of α and for the Pouiseuille flow, for which ΛF for large Pe
scales linearly with α (the analysis of the saturation values of ΛF depicted in figure 8
confirms this observation).

It is important to analyse the robustness of (4.23) both with respect to the nature of
the boundary conditions and the presence of velocity perturbations. As it concerns the
boundary conditions, we made use of the inlet condition ψ |Si

= 0, which corresponds
to enforcing continuity of the concentration. A different approach consists of enforcing
flux continuity. This leads to the mixed boundary condition at the inlet, u(y)ψ −
ε∂ψ/∂n|Si

= 0. At large Pe values (small ε), the two types of boundary conditions
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Figure 9. Contour plots of the Frobenius eigenfunction for a planar parabolic flow, α = 102.
(a) Pe = 50. (b) Pe = 103, snapshot close to the outlet section.

are essentially equivalent. This implies that the same scaling expression holds for
the Frobenius exponent. In other words, the choice of different inlet boundary
conditions modifies the behaviour of ΛF only at small values of Pe, i.e. when the
Frobenius eigenfunction is distributed over large portions of the flow domain. At high
values of Pe, the Frobenius eigenfunction becomes localized near the outlet section
and consequently the choice of the inlet boundary condition, enforcing either the
continuity of the concentration or of the flux, becomes immaterial.

The universal scaling (4.23) is also robust with respect to flow perturbations
which alter the parallel nature of the flow. To show this, consider a two-
dimensional perturbation of planar Poiseuille flow, generated by the stream function
s(x, y) = (3y2 − 2y3)[1 + y2(1 − y)2(cos(2πx) + a cos(6πx))] for a = −1/2 (u = ∂s/∂y,
v = −∂s/∂x). Figure 10(a) depicts the streamlines of this flow, while figure 10(b)
compares its Frobenius eigenvalue with that of planar Poiseuille flow. Even though
the advection–diffusion operator in open bounded flows is intrinsically non-normal
(Schmid 2007; Chomaz 2005), the universal scaling (4.23) is robust with respect to
weak perturbations that destroy the parallel flow structure.

As a final comment, let us discuss a physically relevant application of (4.23) in the
context of micro- and nanoflows. One of the open issues in decreasing the length
scales below the range of few microns is the occurrence of slip flows at the solid
walls. The scaling relation (4.23) provides a simple and experimentally feasible way
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Figure 11. (a) Electroosmotic flow profile. Line (i) refers to (4.25) with κ = 50, �πs = − 3.
Line (ii) is a slip-perturbation of the flow profile of line (i), obtained by modifying the
electro-osmotic term ũos (y) = uos ((y + η)/(1 + 2η)), with η = 0.02. (b) Frobenius exponent ΛF

vs Pe for the electro-osmotic flow (line (i) and �) and for its slip-perturbation (line (ii) and �).
Line (iii) is the analytical result for the plug flow.

to assess the validity of no-slip boundary conditions or to infer the occurrence of slip
velocities. Equation (4.23) or figure 4 indicate that whenever no-slip occurs at the solid
walls, the relaxation exponent either saturates or decreases at large Pe. Conversely,
the occurrence of slip boundary conditions can be inferred whenever the Frobenius
eigenvalue increases linearly with Pe. This phenomenon is illustrated in figure 11 for
the case where an electro-osmotic force is combined with a pressure counter-gradient,
(4.25).

Figure 11(a) line (i) shows a typical electrokinetic flow profile for κ = 50 and
�πs = −3, while curve (ii) depicts a weak perturbation of the flow profile (4.25),
namely ũ(y) = Cũeo(y)+(�πs)y(1−y), where ũeo(y) = ueo((y+η)/(1+2η)) and η = 0.02.
The perturbed flow ũ(y) is close to u(y) but it is characterized by a slip velocity at
the channel walls. The behaviour of ΛF vs Pe for these flows is depicted figure 11(b).
These data confirm the universal scaling expressed by (4.23): while the electro-
osmotic flow in the presence of non-slip boundary conditions is characterized by a
saturating behaviour of ΛF with Pe, its slip perturbation ũ(y) shows a diverging
behaviour of ΛF for high Pe values, as observed e.g. in the plug flow. This result
indicates that simple experiments on advecting–diffusing scalars (e.g. using a capillary
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electrochromatographic column) can in principle be used to discriminate between slip
and non-slip conditions in microchannels.

6. Concluding remarks
This article focuses on the time scale characterizing the convergence towards the

steady-state profile of a diffusing scalar continuously fed into a finite length channel
in the presence of a (possibly non-uniform) velocity profile. The spectral (functional)
approach to this problem predicts that the slowest relaxation exponent is given by
the Frobenius eigenvalue, −ΛF , associated with the advection–diffusion operator with
appropriate boundary conditions.

In the case of a flat velocity profile (plug flow), a non-monotonic behaviour of
ΛF as a function of Pe has been derived in closed form. The functional structure
of this dependence is formally identical to the relationship, referred to as Taylor–
Aris dispersion, yielding the effective axial dispersion coefficient in the presence of a
non-uniform flow profile (e.g. Poiseuille flow). However, the Frobenius eigenvalue and
the Taylor–Aris dispersion coefficient are distinct quantities, which refer to different
physical phenomena.

In the case of non-uniform flow profiles that satisfy no-slip conditions and are
locally linear at the channel walls, the behaviour of ΛF vs. Pe saturates towards a
constant value at large Pe. This result can be derived analytically by exploiting the
localization property associated with the Frobenius eigenfunction, which, as Pe → ∞,
is non-zero only in smaller and smaller areas located at the channel exit and near the
static walls (which are stagnation points for the velocity profile).

The localization feature is then analysed in the case where the local behaviour of
the velocity profile near the stagnation point is nonlinear. Examples are provided for
quadratic and cubic nonlinearities. These examples show that a universal localization
behaviour holds for the Frobenius eigenfunction, and that the invariant rescaling
ultimately depends on the nonlinearity exponent associated with the velocity profile
near the stagnation points. On the basis of the universal localization feature, a
closed form expression yielding the high-Pe asymptotic behaviour of ΛF is derived
analytically in terms of the nonlinearity exponent of the velocity profile. Numerical
simulations confirm quantitatively the theoretical prediction. A velocity profile
possessing a stagnation point characterized by a quadratic nonlinearity, obtained
by a pressure drop that opposes an electro-osmotic body force, is considered as an
example of physically realizable flow with nonlinear behaviour near a stagnation
point far from the channel walls.

The consideration of different values of the channel aspect ratio α for the case of
Poiseuille flow shows that this parameter can have a significant impact on the value
of ΛF for high Pe, but not on its asymptotic scaling. Specifically, the curve ΛF vs. Pe
associated with the Poiseuille profile collapses onto the analytical solution associated
with the plug flow case within an interval of Pe values of say Pe = (0, Pe∗(α)], where
Pe∗(α) → ∞ as α → ∞. This implies that for higher and higher aspect-ratio channels
the influence of stagnation points appear only at larger and larger Pe.

Beyond predicting the controlling time scale to reach steady-state conditions in
microflow devices, we also suggest a simple if indirect experiment to exploit the
knowledge of the asymptotic behaviour of ΛF vs. Pe to establish the occurrence of
slip boundary conditions (physically, deviations from the no-slip condition are mainly
expected in gaseous flows, whenever the mean free path becomes comparable with
the characteristic dimension of the channel cross-section).
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The analysis presented in this article can be considered an extension of the results
derived in Giona et al. (2004b) in the context of closed bounded parallel flows. The
main difference in the universal behaviour is that in closed flows the nonlinearity
exponent controlling the rate of convergence towards the steady state is associated
with the local behaviour of the velocity profile near critical points (i.e. relative
extremals) whereas in open systems the nonlinearity exponent is that associated
with the local behaviour of the velocity profile near stagnation points.

The approach developed in this paper, based on integral and norm conditions
expressing ΛF as a function of the corresponding Frobenius eigenfunction, can be
regarded as a boundary-layer-type analysis, resting upon eigenfunction localization. In
principle, other analytical methods could be used to investigate the same phenomenon,
such as the WKB approximation. However, the WKB approach is neither more
rigorous nor more accurate than the integral approach presented here. In fact, it is
known that for non-Hermitian operators, such as the advection–diffusion operator,
or the non-Hermitian Schrödinger operator introduced in PT-symmetric theories of
quantum mechanics (Bender 2007; Dorey, Millican-Slater & Tateo 2005), the WKB
approximation can be technically onerous, and in some cases can lead to erroneous
conclusions (Dorey, et al. 2005). Moreover, the WKB approximation suffers from some
specific problems when applied to the analysis of spectral problems associated with
fluid mixing systems. While in quantum mechanics, WKB eigenvalues can be obtained
by enforcing the Bohr–Sommerfeld quantization conditions, a similar approach cannot
be straightforwardly applied in the analysis of the advection–diffusion equations in
bounded domains. This makes the application of WKB in this context a challeging
and open isssue.
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